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ABSTRACT

Let F be a family of functions meromorphic in the plane domain D, all
of whose zeros and poles are multiple. Let h be a continuous function on
D. Suppose that, for each f € F, f/(z) # h(z) for z € D. We show that
if h(z) # 0 for all z € D, or if h is holomorphic on D but not identically
zero there and all zeros of functions in F have multiplicity at least 3, then
F is a normal family on D.

1. Introduction

In this paper, we study the normality of families of meromorphic functions on
plane domains, all of whose zeros and poles are multiple. As a first result, we

have
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THEOREM 1: Let F be a family of meromorphic functions on a domain D in C,
all of whose zeros and poles are multiple. Let h be a continuous function on D
such that h(z) # 0 for z € D. Suppose that for each f € F, f'(z) # h(z) for
z € D. Then F is a normal family on D.

For analytic h, this result was observed by Fang [4, Lemma 6]. As an immediate
consequence, we have the

COROLLARY: Let F be a family of meromorphic functions on a domain D in C.
Suppose that for some fixed positive integer n, f'f™ # 1 on D for all f € F.
Then F is a normal family on D.

Proof: Applying Theorem 1 to the family F = {f*t1: f € F} with h(z) = n+1
shows that F is normal on D. But then F is as well. |

For a discussion of the history of this last result, see [7, p. 226] and [6, pp. 18-
19].
If h is allowed to vanish on D, Theorem 1 may fail, even for analytic functions h.

Example 1: Let D = {z:|z] <1} and F = {f,}. where

29 —

(z—;)2(2+%)2_ y 2 1
2 - ;5+n452'

fn(z) =

[

Clearly, F fails to be normal in any neighborhood of 6. However, all zeros and
poles of f,, are multiple; and f/(z) # 2z on C.

However, requiring that all zeros of functions in F have multiplicity at least 3
leads to a positive result.

THEOREM 2: Let F be a family of functions meromorphic on a domain D in C,
all of whose poles are multiple and whose zeros all have multiplicity at least 3.
Let h be a function holomorphic on D, h # 0. Suppose that for each f € F,
f'(2) # h(z) for € D. Then F is a normal family on D.

The hypothesis that all poles are multiple cannot be omitted, as is shown by
the following example.

Example 2: Let D = {z:|z| <1} and F = {f,}, where

(z—2)° s 3 8
W)= — =
fal) z-32 T n3(z — 3/n)
Clearly, F fails to be normal in a neighborhood of 0. However, all zeros of
functions in F have multiplicity 3; and f](z) # 2z on C.



Vol. 136, 2003 NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS 3

The plan of the paper is as follows. In Section 2, we record some known results
which will be used in the proofs of Theorems 1 and 2 and prove a simple lemma
on rational functions needed for those proofs. In Section 3, we prove Theorem 1.
We conclude with the proof of Theorem 2 in Section 4.

2. Auxiliary results

We require the following renormalization result, which has become a standard
tool in the study of normal families.

LemMA 1 ([5, Lemma 2] cf. [7, pp. 216-217]): Let F be a family of functions
meromorphic on the unit disc, all of whose zeros have multiplicity at least k,
and suppose that there exists A > 1 such that |f*)(z)| < A whenever f(z) = 0.
Then if F is not normal, there exist, for each 0 < a < k,

(a) a number 0 < r < 1;

(b) points z,, |zn| < 7;

(¢) functions f, € F; and

(d) positive numbers p, — 0
such that p,® fn (= + pnC) = gn(¢) = g(C) locally uniformly with respect to the
spherical metric, where g is a nonconstant meromorphic function on C, all of
whose zeros have multiplicity at least k, such that g#(¢) < ¢#(0) = kA+ 1. In
particular, g has order at most 2.

Here, as usual, g#(¢) = |¢’(¢)|/(1 + |9(¢)|?) is the spherical derivative.

We also require some facts about the local degree of a continuous function.
See [1, p. 385] for a clear statement of the relevant facts and [3, Chapter 1] for a
detailed discussion and proofs.

LEMMA 2: Let M be the set of all triples (p, U, w), where U is a bounded open
subset of C, p: U — C is a continuous function, and w € C~ p(dU). There
exists a function d: M — Z such that
(1) if Uis a piecewise-smoothly bounded Jordan domain and ¢ is holomorphic
on U, then d(y,U,w) is the winding number of ¢(dU) about w (and hence,
by the argument principle, the number of times ¢ takes on the value w in
U);
(ii) ify: U — Cis a continuous function such that |¢()~p(¢)| < dist(w, @(OU))
for each ¢ € U, then d(v, U, w) = d(¢, U, w); and
(iii) if d(@, U,w) # 0, then U N o~ (w) # 0.

We also need the following result from value distribution theory.
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LEMMA 3 ([2, Theorem 1.1]): Let g be a transcendental meromorphic function
and let R be a rational function, R # 0. Suppose that all zeros and poles of g
are multiple except for finitely many. Then ¢’ — R has infinitely many zeros.

Finally, we require some facts about rational functions.

LEMMA 4 ([6, Lemma 8]): Let f be a nonpolynomial rational function such that
f'(z2) #£1 for z € C. Then

a
z)=z+c+ ———,
1) (z +b)m™
where a # 0, b, and ¢ are constants and m is a positive integer. If the zeros of f
are all multiple, then m = 1.

LEMMA 5: (i) Let @ be a nonconstant rational function, all of whose zeros and
poles are multiple. Then Q'(z) = 1 has a solution in C.

(ii) Let @ be a rational function, all of whose poles are multiple with the
possible exception of z = 0 and all of whose zeros have multiplicity at least 3.
Then for each positive integer k, Q'(z) = z* has a solution in C.

Proof: (i) If Q is a nonconstant polynomial such that Q'(z) # 1, Q(z) = cz+d,
where ¢ # 0,1, and thus does not have multiple zeros. If () is a nonpolynomial
rational function all of whose zeros are multiple such that Q’(z) # 1, then by

Lemma 4,
a

z+b

QRz)=z+c+

k]

so that @ does not have multiple poles.

(ii) Fix k and suppose that Q'(z) — 2% # 0 for all z € C. If @ is a polynomial,
then Q'(2) = 2% + ¢, with ¢ # 0, so that

Q(z) = ——1——3’““ + ¢z +d.
k+1

Since all zeros of @ have multiplicity at least 3, we have & > 2 and Q"(z) =
Q’'(z) = 0 whenever Q(z) = 0. But Q"(z) = kz*~! vanishes only for z = 0.
Thus, we must have @(0) = 0, so that also ¢ = Q'(0) = 0, a contradiction. Thus
@ cannot be a polynomial.

Let f(z) = Q(z) — z372"*! + z. Then f is a nonpolynomial rational function
such that f'(z) # 1. By Lemma 4,
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so that

1
:k“ +c+

(2~1) Q(z)= PR (74‘_(1—,))57

where a # 0, b, and ¢ are complex numbers and m is a positive integer. Suppose
that Q(zo) = 0. Then since zp has multiplicity at least 3, we have

Ho) = ok T _
(2.2) Q'(z0) = ~0 (:0 + b)m+1 =0,
_ " _ {m+1)a
(2.3) Q"(z0) = kg~ + (ﬂzo F bym+2 =0

It follows from (2.2) that zp # 0. Solving (2.2) and (2.3) for zp and using ma # 0,
we obtain x5 = —kb/(m + k + 1). Thus b # 0, and by (2.1},

N (= + m+kl?+1)m+k+1
(24) Q) = (k+1)(z+b)m™

Hence, again by (2.1),

(25) S ek D(E D) a4 1) = (24— )"

m+k+1

Equating coefficients of :™1* in (2.5), we ohtain mb = kb, so that m = k since
b # 0. Equating coefficients of :™+*~! in (2.5) then shows that k = 1, so that
m = 1. But this contradicts the assumption that all nonzero poles of @ are
multiple. The lemma is proved. |

3. Proof of Theorem 1

Since normality is a local property, we may assume that D = A, the unit disc.
Suppose that F is not normal on A. Then by Lemma 1, there exist f, € F,
zn € A, and p, — 0+ such that g,(¢) = fa(zn + pn¢)/pn converges locally
uniformly with respect to the spherical metric to a nonconstant meromorphic
function g, all of whose zeros and poles are multiple. Taking a subsequence and
renumbering, we may assume that =, — 2 € A.

We claim g¢'(¢) # h(zo).

Clearly, ¢’ # h(zo), since then g would be linear and hence could not have
multiple zeros. Suppose ¢'((o) = h{zg). Then ¢ = ¢’ — h{z) is a noncon-
stant analytic function on a neighborhood V of (y, which vanishes at (. Let

« = {w : |w| < }. For ¢ > 0 sufficiently small, the component U of ¢~1(A,)
containing (g is relatively compact in V and satisfies ¢(dU) = {w : |w| = ¢} and
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d(¢,U,0) > 0, where d is the local degree. Set ¢,(¢) = ¢5,(¢) — h(zn + pr();
then ¢, —  locally uniformly on V. Thus, for n sufficiently large, we have
lon(¢) — 9(¢)| < € on U. By (ii) of Lemma 2, d(p,,U,0) = d(¢,U,0) > 0, so
that by (iii) of the same result, there exists (; € U such that ¢,(¢;) = 0. But
this contradicts f/(z) # h(z) on A. The claim is proved.

Since g'(¢) # h(zo), it follows from Lemma 3 that g must be a rational function.
But then by Lemma 5(i), ¢’ must take on the nonzero value h(2), a contradiction.

4. Proof of Theorem 2

By Theorem 1, it suffices to prove that F is normal at points for which h(z) = 0.
So let us assume, making standard normalizations, that F satisfies the conditions
of Theorem 2 and that

h(z) = 2% + apgr 2"t 4+ = 2FB(2), zeA,

where k > 1, b(0) = 1, and h(z) # 0 for 0 < |z| < 1. Consider on A the family
Fr={F=f/h:feF}. If feF, f(0)# h(0)=0; hence, since all zeros of f
are multiple, f(0) # 0. Thus, for any F' € Fy, F(0) = f(0)/h(0) = co. We shall
prove that Fy is normal on A.

Suppose not. Then by Lemma 1 (with @ = k = A = 1), there exist F,, € J1,
zn € A (J2n] €7 < 1), and p, — 0+ such that

Fn(zn + pnC)

o = gn(C) — 9(¢)

spherically uniformly on compact subsets of C, where g is a nonconstant
meromorphic function on the plane, all of whose zeros are multiple, such that
g*(Q) < g*(0) = 2.

We consider two cases.

(a) Suppose z,,/pn — 0o. Then since gn(—zn/prn) = F;,(0)/pn, the pole of g,
corresponding to that of F, at 0 drifts off to infinity, and g has only multiple
poles. We have

s = fDRE) = fa(@N () _ falz) WG L
Fals) = h(=)? Wz Az )
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Thus
’ / f'[ll(':'fl + pn() hl(:'n + pn()
= “n n) = - Fo(2n n
9n(€) = F(zn + pnl) om0 o 3 pu0) (2 + pul)
i (Zn + () k b’(zn + pn C)
= - Fr(zn n
h(zn + pnC) <5n + Pl b(:n + pnC) ) ( o C)
- f;z(zn""pnC) _ ( k P bl(zn +pnC))Fn(3n +Pn<)
h(zn + png) Zn/pn+ € " b(zn + pnQ) Pn ’
Clearly, ( )
ok Wt )
nll}rgo Py P 0 and HILHC}O Pn o T pnC) 0

uniformly on compact sets of C. Thus, on compact subsets of C disjoint from
the poles of g,

Falzn + pal) ' k Y (20 + pn()
smATR PR/ +
h(zn + pn€) an(0) <5n/Pn +¢ P b(zn + pn) ) »(0)
converges uniformly to ¢'(¢). Since f](z)/h(z) # 1, by Hurwitz’ Theorem either
g =1org(¢)#1forall ( € C. The first alternative contradicts g¥#(0) = 2.
But if ¢’ # 1, then by Lemma 3, g is rational; and we obtain a contradiction to

Lemma 5(i).
(b) So we may assume that z,/p, — «, a finite complex number. We have
Fn(ﬂn() Fn(zn + Pn(C - :n/;on))

PR . = 9(¢—a) = g(¢).

the convergence being spherically uniform on compact sets of C and hence uni-
form on compacta disjoint from the poles of §. Clearly, all zeros of § have order
at least 3 and all poles are multiple except possibly the pole at 0, which has order
at least k.
Now
lim h(pnC) _ CA:

uniformly on compact subsets of C. Thus, writing

Gn(C) = fn(pno _ h(pnC) fnl(pnC) _ R(pnC) Frn(pn()
" pht! Pk pah(pnQ) — Ph pn

we have
Gn() = ¢*5(¢) = G()

uniformly on compact subsets of C disjoint from the poles of 5. Note that since
g has a pole of order at least k at 0, G(0) # 0.
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We claim that G’(¢) # ¢*. Indeed, suppose that G'((y) = ¢(&. Then G is
holomorphic at {y and

G;(C) _ h(p:C) _ fvlz(png) = h(px()

ok ok

Thus, if {o # 0, we have G'(¢) = ¢* by Hurwitz’ Theorem and hence G(¢) =
¢K¥*1/(k + 1) + C. Since all zeros of G are multiple, C = 0. But then §(¢) =
¢/(k + 1), which contradicts the fact that § has a pole at 0.

The same argument applies if {p = 0. Indeed, in that case, G is analytic at 0,
so ¢ has a pole of exact order k at 0. Since for each n, the pole of F,,(p,() at
0 has order k, it follows that there exists § > 0 such that F},(p,() has no poles
in A = {z:0 < |z| < §}. Thus G, is holomorphic on As = {z : |z| < é}, so
G, — G uniformly on a neighborhood of 0 as well. We may then apply Hurwitz'
Theorem as above.

Thus G’(¢) # ¢*. Tt follows from Lemma 3 that G must be a rational function.
However, then Lemma 5(ii) shows that G'(¢) = ¢* has a solution in C. The
contradiction establishes that F; is normal on A.

It remains to show that this implies that F is normal on A. Since F; is
normal on A (and hence, as a collection of maps from A to C, equicontinuous
on compacta) and F(0) = oo for each F € Fj, there exists § > 0 such that
if F € Fiy, then |F(z)| > 1 for 2 € As. Hence f(z) # 0 for z € A; for all
f € F. Now since h(z) # 0 for z € A}, F is normal on A} by Theorem 1.
Suppose that F is not normal on As. Then there exists a sequence {f,} C F
which converges spherically uniformly on compact subsets of A%, but none of

#0.

whose subsequences converges spherically uniformly on a neighborhood of 0. By
the invariance of the spherical metric, the same holds for the sequence {1/f.},
whose members are all holomorphic on As. It follows (by the maximum modulus
principle) that {1/f,} diverges uniformly to infinity on compact subsets of Aj.
Thus {f,} converges uniformly to 0 on compact subsets of A and hence so does
{F,}, where F,, = f,/h. But |F,(2)| > 1 for z € Ay, since F, € F;. The
contradiction shows that F is normal on As and hence on A = As; U A]. This
completes the proof of Theorem 2.

Remark: 1In the proofs of Theorem 1 and case (a) of Theorem 2, we could have
invoked Theorem 1 (or Lemma 9) of [6] in place of the combination of Lemma 3
and Lemma 5(i) above.

With only the slightest modifications, the proof of Theorem 2 also yields the
following result.
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THEOREM 3: Let F be a family of functions meromorphic on domain D in C, all
of whose zeros all have multiplicity at least 4. Let h be a function holomorphic
on D, h # 0. Suppose that for each f € F, f'(z) # h(z) for z € D. Then F is a
normal family on D.

Details are left to the reader.
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